
The Tangent Plane, Linearization, And Differentials

The Tangent Plane:

Say we have a function z  fx,y, whose graph is a surface S, and point x0,y0 in the
domain of f. If z0  fx0,y0, then x0,y0, z0 is a point on the surface S. Let u   a,b  be a
unit vector. Let T be the tangent line at x0,y0 in the direction of u. In other words, T is a
line passing through the point x0,y0, z0, tangential to surface S. The slope of line T is the
derivative of f at x0,y0 in the direction of u, Du fx0,y0. Let us refer to this slope as m.
Then the vector equation of T is rt   x0,y0, z0   t  a,b,m .

Let us focus on two particular tangent lines at x0,y0, one in the direction of i   1,0  and
the other in the direction of j   0,1 . We shall refer to these tangent lines as Ti and Tj,
respectively.
 The slope of Ti is fxx0,y0, so the vector equation of Ti is

rt   x0,y0, z0   t  1,0, fxx0,y0 .
 The slope of Tj is fyx0,y0, so the vector equation of Tj is

rt   x0,y0, z0   t  0,1, fyx0,y0 .

The direction vectors of Ti and Tj are  1,0, fxx0,y0  and  0,1, fyx0,y0 . If these
vectors are positioned at the common tail x0,y0, z0, they determine a unique plane, which
is the tangent plane, , assuming f is differentiable at x0,y0. To find a normal vector for
this plane, we compute the cross product of the direction vectors of Ti and Tj.

det

i j k

1 0 fxx0,y0

0 1 fyx0,y0


0 fxx0,y0

1 fyx0,y0
i 

1 fxx0,y0

0 fyx0,y0
j 

1 0

0 1
k 

fxx0,y0i  fyx0,y0j  1k   fxx0,y0,fyx0,y0, 1 .

Although this vector could serve as the normal vector for plane , it’ll be simpler if we use
the opposite vector, which is  fxx0,y0, fyx0,y0,1  (which we would have obtained if we
had computed the cross product in the reverse order).

Now we can write the equation of plane . Since it contains the point x0,y0, z0 and has
normal vector  fxx0,y0, fyx0,y0,1 , its equation must be
fxx0,y0x  x0  fyx0,y0y  y0  1z  z0  0. We rewrite this as follows:
fxx0,y0x  x0  fyx0,y0y  y0  z  z0  0
z  fxx0,y0x  x0  fyx0,y0y  y0  z0 Call this Equation #1
z  fxx0,y0x  fxx0,y0x0  fyx0,y0y  fyx0,y0y0  z0
z  fxx0,y0x  fyx0,y0y  z0  fxx0,y0x0  fyx0,y0y0 Call this Equation #2

As previously discussed, the standard form for the equation of a plane is Ax  By  Cz  D.
For a nonvertical plane (where C  0, we can solve for z in terms of x and y, giving us
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z   A
C x   B

C y  D
C . Equation #2 is in this form.

The standard form equation for  is fxx0,y0x  fyx0,y0y  z  fxx0,y0x0  fyx0,y0y0  z0.
Call this Equation #3. Here we have:
 A  fxx0,y0

 B  fyx0,y0

 C  1
 D  fxx0,y0x0  fyx0,y0y0  z0

Let’s return our attention to Equation #1. The form of this equation has a special
significance that you might not realize. To see the significance, let’s go back for a moment
to basic algebra. Recall that in the x,y plane, a line with slope m and passing through the
point x0,y0 has the equation y  y0  mx  x0. This equation is said to be in point, slope
form. It could be rewritten into the form y  mx  b, which is slope, y intercept form.
However, there are times when it’s preferable to keep the equation in point, slope form, but
to modify that form as y  mx  x0  y0. This was seen in Calculus I. Given a function
fx, its tangent line at the point x0,y0 has slope fx0, so the equation of the tangent line
is y  fx0x  x0  y0. (This concept was generalized in Calculus II when we studied
Taylor polynomials. For instance, at the point x0,y0, the function has a tangent parabola
whose equation is y  fx0x  x02  fx0x  x0  y0. We could go on to formulate
tangent cubics, tangent quartics, and so on.)

Anyway, if we take the equation y  mx  x0  y0 and “crank it up” an extra dimension, we
get z  m1x  x0  m2y  y0  z0. This new equation represents a plane rather than a line.
Call this plane . Just as x0,y0 was a point on the line y  mx  x0  y0, x0,y0, z0 is a
point on plane . What is the significance of the coefficients m1 and m2, if any? The
concept of slope is not directly applicable to a plane, but it is indirectly applicable. If we
intersect  with the vertical plane y  y0 (which is parallel to the x, z plane), we obtain a line
whose equation is z  m1x  x0  z0, and m1 is the slope of this line. On the other hand, if
we intersect  with the vertical plane x  x0 (which is parallel to the y, z plane), we obtain a
line whose equation is z  m2y  y0  z0, and m2 is the slope of this line. Thus, m1 and m2

are the slopes of two traces (or cross sections) of the plane . On the basis of this insight,
it makes sense for us to refer to the equation z  m1x  x0  m2y  y0  z0 as point, slope
form for the equation of the plane.

Now we see that Equation #1 is the equation of the tangent plane in point, slope form.

While we’re at it, let’s take a further look at the equation of a nonvertical plane in the form
z   A

C x   B
C y  D

C . This is the three-dimensional version of the two-dimensional
equation y  mx  b, which is the equation of a nonvertical line in the x,y plane. Technically,
the y intercept of this line is the point 0,b, but, speaking casually, we can say the y
intercept is b. That’s why y  mx  b is referred to as the slope, y intercept form of the
equation. Analogously, the z intercept of the plane z   A

C x   B
C y  D

C is the point
0,0, D

C , but, speaking casually, we can say the z intercept is D
C . What is the significance

of the coefficients  A
C and  B

C , if any? Let us refer to the plane z   A
C x   B

C y  D
C as

. If we intersect  with the vertical plane y  0 (which is the x, z plane), we obtain a line
whose equation is z   A

C x  D
C , and  A

C is the slope of this line. On the other hand, if we
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intersect  with the vertical plane x  0 (which is the y, z plane), we obtain a line whose
equation is z   B

C y  D
C , and  B

C is the slope of this line. Thus,  A
C and  B

C are the
slopes of two traces (or cross sections) of the plane . On the basis of this insight, it
makes sense for us to refer to the equation z   A

C x   B
C y  D

C as slope, z intercept
form for the equation of the plane.

In summary, the equation of the tangent plane can be written in three major forms:
 z  fxx0,y0x  x0  fyx0,y0y  y0  z0 is point, slope form.
 z  fxx0,y0x  fyx0,y0y  z0  fxx0,y0x0  fyx0,y0y0 is slope, z intercept form.
 fxx0,y0x  fyx0,y0y  z  fxx0,y0x0  fyx0,y0y0  z0 is standard form.
All three are worthwhile, but point, slope form is the preferred form.

As previously discussed, the function fx,y  x2  y2 has a tangent plane at 2,3 and its
equation is 4x  6y  z  13 in standard form. We have noted that the left side of the
equation is fx2,3x  fy2,3y  z, which is consistent with our general formula, where the left
side is fxx0,y0x  fyx0,y0y  z. The general formula says the right side of the equation
should be fxx0,y0x0  fyx0,y0y0  z0, i.e., fx2,32  fy2,33  f2,3, which is
42  63  13, which does work out to be 13.

For the function fx,y  x2  y2, the tangent plane at 2,3 has point, slope equation
z  4x  2  6y  3  13, and it has slope, z intercept equation z  4x  6y  13.

The right side of the tangent plane’s equation in standard form can be expressed as
fx0,y0   x0,y0  z0. The left side can be expressed as fx0,y0   x,y  z. Hence,
the standard form equation can be written as fx0,y0   x,y  z  fx0,y0 
 x0,y0  z0. In fact, we could rewrite this as follows:
fx0,y0   x,y  fx0,y0   x0,y0   z  z0
fx0,y0   x,y    x0,y0   z  z0
fx0,y0   x  x0,y  y0   z  z0 Call this the gradient vector form.

In the case of the function fx,y  x2  y2, the gradient vector form for the equation of the
tangent plane at 2,3 is  4,6    x  2,y  3   z  13.

As previously discussed, the function fx,y  x2  y2 has gradient vector  14,26  at the
point 7,13. Since z0  f7,13  218, the tangent plane at 7,13 has the following
equations:
  14,26    x  7,y  13   z  218 in gradient vector form.
 z  14x  7  26y  13  218 in point, slope form.
 z  14x  26y  218 in slope, z intercept form.
 14x  26y  z  218 in standard form.

Linearization:

Recall that in two dimensions, a linear function is a function whose graph is a nonvertical
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line with slope m, and whose equation, in slope, y intercept form, is y  mx  b. In three
dimensions, a linear function is a function whose graph is a nonvertical plane, and whose
equation is z   A

C x   B
C y  D

C in slope, z intercept form, or
z  m1x  x0  m2y  y0  z0 in point, slope form. A linear function in three dimensions is
commonly named Lx,y. Thus, we may write Lx,y   A

C x   B
C y  D

C , or
Lx,y  m1x  x0  m2y  y0  z0.

If the function z  fx,y is differentiable at x0,y0, then it has a tangent plane at this point,
, which is the graph of a linear function, Lx,y. We call this function the linearization of f
at x0,y0. We have:
 Lx,y  fxx0,y0x  x0  fyx0,y0y  y0  z0
 Lx,y  fxx0,y0x  fyx0,y0y  z0  fxx0,y0x0  fyx0,y0y0

The linearization of f at x0,y0 is also called the linear approximation of the function at
x0,y0.

The linearization of fx,y  x2  y2 at 2,3 is Lx,y  4x  2  6y  3  13, or
Lx,y  z  4x  6y  13.

For the function fx,y  7x2  5xy  2y3, fxx,y  14x  5y and fyx,y  5x  6y2. At the
point 2,1, we have z0  f2,1  20 and f2,1   23,4 , so the tangent plane’s
equation is  23,4    x  2,y  1   z  20, or z  23x  2  4y  1  20, or
z  23x  4y  22. Hence, the function’s linearization at 2,1 is
Lx,y  23x  2  4y  1  20, or Lx,y  23x  4y  22.

Differentials:

Say we have a function z  fx,y, whose linearization at x0,y0 is
Lx,y  fxx0,y0x  x0  fyx0,y0y  y0  z0. By definition, z0  fx0,y0. Notice that
Lx0,y0  0  0  z0  z0. Thus, Lx0,y0  fx0,y0. If we refer to the graph of f as surface
S, and to the graph of L as plane , then the equation Lx0,y0  fx0,y0 means that S and
 coincide at the point x0,y0, z0. This is actually quite trivial. All we are saying is that the
graph of the function and its tangent plane coincide at the point of tangency.

When x,y  x0,y0, Lx,y serves as an approximation to fx,y. The approximation is
generally good when x,y is close to x0,y0, and is generally poor when x,y is far away
from x0,y0.

For any point x,y different from x0,y0, let dx be the deviation of x from x0, and let dy be
the deviation of y from y0. In other words, dx  x  x0 and dy  y  y0. It follows that
x  x0  dx and y  y0  dy, and so x,y  x0  dx, y0  dy.

When x,y changes from x0,y0 to x0  dx, y0  dy, fx,y changes from fx0,y0  z0 to
fx0  dx, y0  dy. We denote this change as f.
f  fx0  dx, y0  dy  fx0,y0  fx0  dx, y0  dy  z0.
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When x,y changes from x0,y0 to x0  dx, y0  dy, Lx,y changes from Lx0,y0  z0 to
Lx0  dx, y0  dy. We denote this change as L.
L  Lx0  dx, y0  dy  Lx0,y0  Lx0  dx, y0  dy  z0.

Just as Lx,y  fx,y, likewise L  f.

Lx0  dx, y0  dy  fxx0,y0x0  dx  x0  fyx0,y0y0  dy  y0  z0 
fxx0,y0dx  fyx0,y0dy  z0.

So L  fxx0,y0dx  fyx0,y0dy  z0  z0  fxx0,y0dx  fyx0,y0dy. Note that this could
also be expressed as fx0,y0   dx,dy .

We define this quantity to be the differential of the function f, denoted df. By definition,
df  L. Hence df  f.

Since we have z  fx,y, we may write dz in place of df.

All of this is analogous to what we do in Calculus I...

Say we have a function, y  fx. At x0, the slope of the tangent line is fx0. If y0  fx0,
then the tangent line has the equation y  y0  fx0x  x0, or y  fx0x  x0  y0. We
may think of this as a linear function, Lx  fx0x  x0  y0, known as the linearization of
fx at the point x0.

Let dx be the deviation of x from x0. dx  x  x0, so x  x0  dx.

When x changes from x0 to x0  dx, fx changes from fx0  y0 to fx0  dx. We denote
this change as f. f  fx0  dx  fx0  fx0  dx  y0.

When x changes from x0 to x0  dx, Lx changes from Lx0  y0 to Lx0  dx. We denote
this change as L. L  Lx0  dx  Lx0  Lx0  dx  y0. But
Lx0  dx  fx0x0  dx  x0  y0  fx0dx  y0, so
L  fx0dx  y0  y0  fx0dx.

We define this quantity to be the differential of the function f, denoted df, i.e., df  fx0dx.
By definition, df  L. Hence df  f.

Since we have y  fx, we may write dy in place of df.

To illustrate, consider fx,y  x2  y2, whose linearization at 2,3 is
Lx,y  4x  2  6y  3  13. Both functions have a value of 13 at 2,3. At 1,5, the
values of f and L will differ. f1,5  26, whereas L1,5  21. 21 is a poor approximation to
26, but that is because 1,5 is relatively far away from 2,3–the distance is 5  2.24.
Anyway, when x,y varies from 2,3 to 1,5, we have f  26  13  13 and
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L  21  13  8. Again, 8 is a poor approximation to 13, but this is because of the
relatively large distance between 2,3 and 1,5. Here we have dx  1 and dy  2. Note
that df  L  f2,3   1,2    4,6    1,2   4  12  8.

Now suppose we have a smaller deviation from 2,3, let’s say to the point 1.8,3. 4.
f1.8,3. 4  14.8, whereas L1.8,3. 4  14.6. 14.6 is a good approximation to 14.8. When
x,y varies from 2,3 to 1.8,3. 4, we have f  14.8  13  1.8 and L  14.6  13  1.6.
1. 6 is a good approximation to 1.8. Here we have dx  0.2 and dy  0.4. Note that
df  L  f2,3   0.2,0. 4    4,6    0.2,0. 4   0.8  2.4  1.6.
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